
Strengthening the Zipper

Tristan O.R. Allwood and Susan Eisenbach

Imperial College London

Abstract. The zipper is a well known design pattern for providing a
cursor-like interface to a data structure. However, the classic treatise by
Huet only scratches the surface of some of its potential applications. In
this paper we take inspiration from Huet, and describe a library suitable
as an underpinning for structured editors. We consider a zipper structure
that is suitable for traversing heterogeneous data types, encoding routes
to other places in the tree (for bookmark or quick-jump functionality),
expressing lexically bound information using contexts, and traversals for
rendering a program indicating where the cursor is currently focused.

1 Introduction

We have recently found ourselves implementing an interactive tool for visualising
and manipulating an extended λ-calculus, FC [7], which is the current, explicitly
typed, intermediate language used in GHC. Our editor allows the user to view
an entire FC term (e.g. a Haskell function translated to FC). The user has a
cursor, which indicates the current subterm of the entire term that has the
focus. The user can then apply operations to the current subterm (e.g. applying
a β-reduction simpli�cation or unfolding a global de�nition at the �rst available
place within the subterm).

The tool provides a view of the variables that are currently in scope at the
cursor location and this information is also provided to the functions that operate
on the currently focused subterm. The tool provides several views on the internal
data structure. The user has ways of manipulating this internal data structure,
and the output from what is rendered is just a view.

We wanted to support bookmarks i.e. the ability to mark a subterm as book-
marked and then later to return the cursor to that location. However, if the user
makes a change to the term by manipulating a subterm, we want to be able to
detect which bookmarks may have become invalidated by that change, and �x
them in some way.

During implementation we developed an internal data structure based around
a design pattern similar in many ways to the classic zipper [1]. However we had
to address several issues that the original paper doesn't cover, and that we
couldn't �nd in the literature. These issues relate to traversal in order to render
the di�erent UI views and where complicated by the fact that our underlying
term language was made up of several (possibly) mutually recursive data types.

Borne out of our experiences in implementing this tool, we have developed
a library, CLASE, that can provide a cursor data structure over a set of data

Fig. 1: Our Interactice Core editor.

types, and an interface for moving the focus, as-well as traversing the cursor to
perform actions such as rendering.

The rest of this paper is organised as follows: We begin in Section 2 by
sketching the underlying design of our Cursor with a simple example, motivating
our use of Generalized Algebraic Data Types (or GADTs, [11]) to allow us to
create cursors that can traverse heterogeneous data types. We then introduce
CLASE, the cursors it uses and how a user can move a cursor about in Section
3. In Section 4 we motivate some duplication and complexity that can occur
when attempting to render a cursor (to e.g. a String) and outline how CLASE

makes this easier and more idiomatic for a user to do. Another feature of CLASE
is its support for bookmarks into the cursor, which are explained int Section 5.
Finally in Section 6 we outline related work and conclude.

2 Contexts and simple Cursors

To demonstrate our techniques we have created small language Lam presented in
Figure 2. The Lam type marks the root of our program, and its sole constructor,
Root , is a simple wrapper over a Lam expression.1

1
Lam refers to the �language�, which is de�ned by the Lam, Exp and Type types.

data Lam
= Root Exp

data Exp
= Abs String Type Exp
| App Exp Exp
| Var Integer

data Type
= Unit
| Arr Type Type

Fig. 2: The Lam Language

Expressions are either lambda abstractions, Abs, which carry a String name
for their variable, a Type for their variable and an expression in which the variable
is in scope. Application expressions are the familiar application of two expres-
sions to each other. Variable expressions carry a de Bruijn index [9] indicating
which enclosing Abs binds the variable this Var refers to. Types are either arrow
types, Arr or some notional unital type, Unit .

The following Lam program represents the term λx :: τ → τ.(x ◦ λy ::
τ.(y ◦ x)):

Root (Abs "x" (Unit ‘Arr ‘ Unit) $
(Var 0) ‘App‘ (Abs "y" Unit $ (Var 0) ‘App‘ (Var 1)))

A simple Cursor is a pair of the value (i.e. subterm) currently in focus (some-
times referred to hereafter as it), and some context, which will allow reconstruc-
tion of the entire term. Our cursors are analogous to the zipper design pattern,
allowing O(1) movement up or down the tree.

In Figure 3 we visualise a cursor moving over the Lam value:

Root ((Abs "x" (Unit ‘Arr ‘ Unit) (Var 0)) ‘App‘ (Var 1))

The cursor in (a) starts focused at the Root constructor. Since this construc-
tor is �at the top� of the term's structure, the context is empty. We then in (b)
move the cursor down, so the focus is on the App constructor, in doing so we
add a Context constructor (here ExpToRoot) to the front of the context. The
context constructors explicitly witness the change needed to be applied to the
current focus in-order to rebuild one layer of the tree. Moving the focus onto
the Abs constructor on the left hand side of the application in (c) pushes a new
constructor onto the context. ExpToApp0 both indicates the focus is in the �rst
Exp child of an App node, and carries the values that where the right-hand-
children of the App node (Var 1). Moving down once more in (d) puts the focus
on the Arr constructor inside the Type child of the Abs node, and again pushes
an appropriate context constructor to be able to rebuild the Abs node should
the user wish to move up.

Cursor

Context ListCurrent Focus

it context

Root ∅

App

Abs "x" Var 1

Var 0Arr

Unit Unit

(a) The initial cursor at the root

Cursor

Context ListCurrent Focus

it context

App ExpToRoot ∅

Abs "x" Var 1

Var 0Arr

Unit Unit

(b) Moving down into the Exp

Cursor

Context ListCurrent Focus

it context

Abs "x" ExpToApp0 ExpToRoot ∅

Var 0Arr Var 1

Unit Unit

(c) Moving into the left child of the App

Cursor

Context ListCurrent Focus

it context

Arr TypeToAbs "x" ExpToApp0 ExpToRoot ∅

Var 0 Var 1Unit Unit

(d) Moving into the Type child of the Abs

Fig. 3: Cursor structure changes due to moving the focus

In order to be able to move around easily, given our original data types
(Lam, Exp and Type), we need context constructors to represent all of the pos-
sible contexts for our cursor. We use GADTs to push into the type system the
types that our context constructors expect for their �missing value�, and the
type of the constructor they ultimately represent. We will later use this extra
information to help maintain some general invariants and as a sanity check that
our implementation of a cursor is correct.

data Context from to where
ExpToRoot :: Context Exp Lam
ExpToApp0 :: Exp → Context Exp Exp

TypeToAbs :: String → Exp → Context Type Exp
...

As we saw in the diagram, when we move around our term, we build up a
stack of Contexts. If our contexts were ordinary data types we could use a list,
however we need to ensure that the to parameter of our �rst Context matches
up with the from parameter of the next Context . To do this we use a new data
type called Path.

data Path ctr from to where
Stop :: Path ctr anywhere anywhere
Step :: (. .)⇒ ctr from middle → Path ctr middle to → Path ctr from to

Stop is akin to the nil, [], at the end of a list, and Step is akin to cons, :.
Since the intermediate location, middle, in Step is existentially quanti�ed, we
need to provide a way of extracting its type at a later time, and hence the (for
the moment unspeci�ed) class constraint.

Our basic cursor structure is then simply:

data Cursor here = Cursor{
it :: here,
context :: Path Context from Lam
}

The current point of focus is denoted by it , and the context we are in is a
path from here up to the root of our language, Lam. The cursor data structure
in our library CLASE extends this data type in two useful ways.

3 CLASE

We now present our library, CLASE, which is a Cursor Library for A Structured

Editor.2 As shown in Figure 4, a typical use of CLASE consists of three parts.
There is the code the developer has to write, typically the data types that express
the language to be structurally edited (e.g. the Lam datatypes), a couple of
speci�c type classes useful for rendering as discussed in Section 4, and of course,
the application that uses CLASE itself. CLASE then provides some Template
Haskell scripts that automatically generate some boilerplate code, and an API
of general functions for building, moving and using CLASE cursors.

CLASE requires the user to implement a typeclass called Language, shown
in Figure 5. The instance should be the type that is at the root. So for our Lam
example, we will make an instance Language Lam.

A Language needs to have data types (expressed using associated data type
families [12]) corresponding to its Contexts, primitive Movements and a way of
re�ecting on the di�erent types in the language (TypeRep). The Context Lam is

2 It is available for download with documentation from [8].

Auto Generated Code

instance Language

instance Traversal

Traversal Adapters

User Code

Adapter instances

instance Bound

Data Types (e.g. LAM)

UI
Application

CLASE

Movement API

Bookmark API

class Traversal

class Bound

Template
Haskell
Scripts

class Language

Traversal API

Fig. 4: An overview of using CLASE

as shown earlier. Primitive Movements are GADT constructors that witness all
of the one-step movements Up or Down that the cursor could do. For example,
for Lam they would be:

data Movement d a b where
MUp :: Movement Down b a → Movement Up a b
MRootToExp :: Movement Down Lam Exp
MAppToExp0 :: Movement Down Exp Exp
MAbsToType :: Movement Down Exp Type
...

The way of re�ecting on the di�erent types in the language is provided by a
simple GADT:

data TypeRep a where
ExpT :: TypeRep Exp
LamT :: TypeRep Lam
TypeT :: TypeRep Type

This is then linked by the user to the type class Reify , which provides a some-
times more convenient way of passing around the witnesses. ExistsR is a data
type that provides an existential wrapper for something that is parameterised
by some type in the language.

With these data types for the language declared, the user then has to provide
some primitive functions that rebuild values given a Context and a value for it's
�hole� (buildOne), or take apart a value given an indication of which child we
want to become the �hole� (unbuildOne).

We also require that all movements are invertible (invertMovement), and
can be tested for equality (movementEq). Movement equality needs to provide

class Language l where
data Context l :: ∗ → ∗ → ∗
data Movement l :: ∗ → ∗ → ∗ → ∗
data TypeRep l :: ∗ → ∗
buildOne :: Context l a b → a → b
unbuildOne :: Movement l Down a b → a → Maybe (Context l b a, b)

invertMovement :: Movement l d a b → Movement l (Invert d) b a
movementEq :: Movement l d a b → Movement l d a c → Maybe (TyEq b c)
reifyDirection :: Movement l d a b → DirectionT d
contextToMovement :: Context l a b → Movement l Up a b

downMoves :: TypeRep l a → [ExistsR l (Movement l Down a)]
moveLeft :: Movement l Down a x → Maybe (ExistsR l (Movement l Down a))
moveRight :: Movement l Down a x → Maybe (ExistsR l (Movement l Down a))

class Reify l a where
reify :: a → TypeRep l a

data ExistsR l (r :: ∗ → ∗) where
ExistsR :: (Reify l a)⇒ r a → ExistsR l r

data Up
data Down
type family Invert d :: ∗
type instance Invert Up = Down
type instance Invert Down = Up

data DirectionT a where
UpT :: DirectionT Up
DownT :: DirectionT Down

data TyEq a b where
Eq :: TyEq a a

Fig. 5: The Language typeclass and supporting data structures and types

a type equality witness in the case that the two movements are the same. All
Movements can only move up or down, which is what reifyDirection requires, and
all Contexts must correspond to an upward movement (contextToMovement).

Finally, in order to provide more generic move up/down/left/right operations
that don't need an explicit witness, the user needs to enumerate all the possible
down movements starting from a particular type (downMoves) and �nally how
to logically shift left or right a downward movement (moveLeft and moveRight).
For example moveLeft MAbsToExp = Just (ExistsR MAbsToType)

For simple languages, such as our Lam language, the instance of Language
is straightforward and easily mechanically derivable. For such languages we pro-
vide a Template Haskell function that can automatically generate a module con-
taining the Language Lam instance. As the current state of Template Haskell
precludes the inline generation of GADTs and Associated Data Types, our gen-
eration function outputs the module as a source �le that can be imported later.

The Template Haskell script provided with CLASE requires the user to
specify the module to create the instance of Langauge in, the root data type
(Lam), and the types that the cursor should be able to navigate between (Lam,
Exp and Type). The library user invokes the script using a splice, $(...), and
refers to the root and navigable types using TH quasiquotes (�), as shown:

$ (languageGen ["Lam", "Language"]
� Lam
[� Lam, � Exp, � Type])

The languageGen function works by using TH reify to access the shape of
Lam, Exp and Type data types, and then processes that to work out the simple
Contexts, and from there simple Movements and the implementations of the
primitive functions such as buildOne and unbuildOne.

With a suitable instantiation of Language, CLASE then provides the library
functions and data types for representing and manipulating cursors. The core
Cursor data structure is an extended version of the Cursor seen previously.
It is now parameterised by three types; l is the same type used to instantiate
the Language typeclass this Cursor is used for, x is used for bookmark like
behaviour, and will be discussed in Section 5, and a is the type of the current
focus. it and ctx are the current focus and context as before, and for bookmark
behaviour we also add a log �eld, that again will be discussed in Section 5.

data Cursor l x a = (Reify l a)⇒ Cursor{
it :: a,
ctx :: Path l (Context l) a l ,
log :: Route l a x
}

CLASE provides two ways of moving the focus of a cursor around. The �rst
is a way of applying the speci�c movements described in the Language instance.
This is through a function applyMovement :

applyMovement :: (Language l ,Reify l a,Reify l b)⇒
Movement l d a b → Cursor l x a → Maybe (Cursor l x b)

so given a Movement going from a to b (in either direction), and a Cursor
focuses on an a, you will get back a Cursor focused on a b. This is a very
useful function if a GUI wants to apply a set of movements around a known tree
structure. However it does require knowing up-front the type of the Cursor 's
current focus and that you have a Movement which matches it.

CLASE also provides a set of generalized movement operators. These do
not need the calling context to know anything about the Cursor they are being
applied to. There are four ways of generically moving around a tree, up, depth-
�rst down, or moving left/right to the adjacent sibling of where you currently are.
Since it is unknown what type the focus of the Cursor will be after applying
one of these operations, they return Cursors with the type of it existentially
quanti�ed.

data CursorWithMovement l d x from where
CWM :: (Reify l to)⇒ Cursor l x to →

Movement l d from to → CursorWithMovement l d x from
genericMoveUp :: (Language l)⇒

Cursor l x a → Maybe (CursorWithMovement l Up x a)
genericMoveDown :: (Language l)⇒ Cursor l x a →

Maybe (CursorWithMovement l Down x a)
genericMoveLeft :: (Language l)⇒ Cursor l x a →

Maybe (ExistsR l (Cursor l x))
genericMoveRight :: (Language l)⇒ Cursor l x a →

Maybe (ExistsR l (Cursor l x))

In the case of genericMoveUp /Down we also return the Movement construc-
tor that could have been used via an applyMovement call to achieve the same
e�ect, should an application �nd that useful.

4 Rendering and binding

One of the things you want to do with a structured editor is to display the
contents, indicating where the current focus is. Given one of our Cursors, this
would require you to:

1. Convert the value of the focus (i.e. a Lam, Exp or Type) to a String .
2. Modify the String value from rendering the focus to indicate the current

focus (e.g. by wrapping it in marking brackets ala "> ... <").
3. Render all of the context constructors, passing in the String from rendering

what is below that constructor as the String to use as the value for the �hole�
in the constructor.

In Figure 6 we outline part of our �rst attempt at just rendering expressions
and contexts, ignoring the control �ow needed to fold context results into each
other. Since the Lam language has bound variables, and we wish to render their
names in variable position, we perform the computation in some �ctional monad
M and use its API function addBinding to make a binding for a new variable
available in a sub-computation.

As is clear in the example, the code is highly repetitious, and the logic for
when to call addBinding is intermingled with the code for rendering and travers-
ing. In practice we have found this binding code hard to manage (particularly if
the language grows to more complexity), and the duplication highly undesirable.

In CLASE we solve this problem by completely factoring away the bind-
ing code, and then provide adapters to make writing the rendering code more
factored. CLASE has a typeclass Bound which allows a user to use the context-
constructors generated for their language to express binding constraints. The
intuition is that when a traversal moves down through the tree into the �hole�
described by the constructor, the user can alter the result of the traversal value.

renderExp :: Exp → M String
renderExp (Abs str ty exp) = do

tys ← renderType typ
rhs ← addBinding str (renderExp exp)
return ("λ " ++ str ++ ": " ++ tys ++ " . " ++ rhs)

...

renderCtx :: Context Lam from to → M String → M String
renderCtx (TypeToAbs str exp) rec = do

tys ← rec
rhs ← addBinding str (renderExp exp)
return ("λ " ++ str ++ ": " ++ tys ++ " . " ++ rhs)

renderCtx (ExpToAbs str ty) rec = do
tys ← renderType ty
rhs ← addBinding str rec
return ("λ " ++ str ++ ": " ++ tys ++ " . " ++ rhs)

...

addBinding :: String → M a → M a
...

Fig. 6: Parts of a �rst attempt at rendering a Lam cursor

class (Language l)⇒ Bound l t where
bindingHook :: Context l from to → t → t

For the Lam language, an appropriate instance for our rendering code above
would be to wrap the hole value in an addBinding application whenever we move
through an Abs from it's Exp child, and in all other cases, to leave it unchanged.

instance Bound Lam (M a) where
bindingHook (ExpToAbs str) hole = addBinding str hole
bindingHook hole = hole

CLASE also provides a combinator for doing render-like traversals over a
Cursor . It is a library function with the signature:

completeTraversal :: ∀ l t x a.(Traversal l t)⇒ Cursor l x a → t

The Traversal type-class contains functions for performing the three actions
itemized above, and the library contains the glue-code to make the traversal
work. However instead of requiring the user to implement this type-class di-
rectly, CLASE features another Template Haskell script to automatically cre-
ate an instance of Traversal given instances of some adapters. Our TH script
(adapterGen) generates the follow code for Lam.

class LamTraversalAdapterExp t where
visitAbs :: Exp → t → t → t

visitApp :: Exp → t → t → t
visitVar :: Exp → t

class LamTraversalAdapterLam t where
visitLam :: Lam → t → t

class LamTraversalAdapterType t where
visitUnit :: Type → t
visitArr :: Type → t → t → t

class LamTraversalAdapterCursor t where
visitCursor :: Lam → t → t

instance (LamTraversalAdapterLam t ,
LamTraversalAdapterExp t ,
LamTraversalAdapterType t ,
LamTraversalAdapterCursor t ,
Bound Lam t)⇒ Traversal Lam t where
...

As an example, the user logic for rendering an abstraction constructor is now
restricted to just the instance of the visitAbs function in LamTraversalAdapter :

instance LamTraversalAdapterExp (M String) where
visitAbs (Abs str) ty exp = do

tys ← ty
exps ← exp
return ("λ " ++ str ++ " : " ++ tys ++ " . " ++ exps)

...

Using the API is straightforward, given user instances of the adapters above,
then converting a Cursor to an M String is simply a case of calling completeTraversal
in the correct-type context:

render :: Cursor Lam x a → M String
render = completeTraversal

5 Routes and Bookmarks

An editor developed using CLASE may want to keep track of multiple locations
in the tree (e.g. to provide bookmark or quick-jump functionality). Ideally we
would like these bookmarks to be persistent across updates to the tree, and
where this is not possible, for there to be some way of dealing with the now
invalidated bookmarks.

Any position in the tree can be reached from any other by a series of Up
movements, followed by a series of Down movements. Using the Path data type
from earlier, we can encode these routes in a new CLASE data type Route:

data Route l from to where
Route :: (Reify l mid)⇒

Path l (Movement l Up) from mid →
Path l (Movement l Down) mid to → Route l from to

These can be made into a unique routes by disallowing the last Up movement
to be the inverse of the �rst Down movement, i.e. the following invariant is
maintained:

route_invariant :: (Language l)⇒ Route l from to → Bool
route_invariant (Route (Step mup Stop) (Step mdown))

= (¬ ◦ isJust) (invertMovement mup ‘movementEq ‘ mdown)
route_invariant (Route (Step ups) downs)

= route_invariant (Route ups downs)
route_invariant (Route Stop) = True

The CLASE cursor keeps track of a single Route to some marked location.
We provide an API for extending the current route by a single movement, reset-
ting it, joining two routes together and making a Cursor follow a Route.

updateRoute :: (Language l ,Reify l a,Reify l b)⇒
Movement l d a b → Route l a c → Route l b c

resetLog :: Cursor l x a → Cursor l a a
appendRoute :: (Language l ,Reify l a,

Reify l b,Reify l c)⇒
Route l a b → Route l b c → Route l a c

followRoute :: (Language l)⇒
Cursor l x a → Route l a c → Maybe (Cursor l x c)

Should a user application want to bookmark multiple di�erent subterms, this
API makes this straightforward to do, and helps ensure the application doesn't
forget to update the bookmarks. The user application would have as its state a
Cursor with an empty log , and a map of integers to routes that lead from the
cursor's current location to somewhere else. For example, a Lam GUI may use
the following:

data CursorHolder where
CH :: Cursor Lam a a → Map Int (ExistsR Lam (Route Lam a))→

CursorHolder Lam

Creating a new bookmark at the current location is just a case of inserting a
value of ExistsR (Route Stop Stop) into the Map at the bookmark's key.

When the GUI tries to move the cursor, the main loop would respond to a key-
press. We proceed by unwrapping the cursor holder and applying genericMoveDown
to the cursor.

keypressDown :: CursorHolder → CursorHolder
keypressDown ch@(CH cursor@Cursor{ }bookmarks) = fromMaybe ch $ do

(CWM cursor ′)← genericMoveDown cursor
...

At this point of the code, the type of cursor is ∃ a.Cursor Lam a a and
cursor ′ is ∃ b.Cursor Lam a b, i.e. the log �eld of cursor ′ gives a route back
to the a. If we attempted to return a new CursorHolder containing cursor ′ (or
resetLog cursor ′) and the original bookmarks it would be a type error. The type
system enforces that we update all the bookmarks to make the type parameters
match up with the new cursor parameters...

...
let bookmarks ′ = Map.map (λ(ExistsR bm)→

ExistsR ((log cursor ′) ‘appendRoute‘ bm))
bookmarks

let cursor ′′ = resetLog cursor ′

return $ CWM cursor ′′ bookmarks ′

Jumping to a bookmark is then a case of using CLASE's followRoute to
update the cursor's location, and then using the same logic as above to update
all the bookmarks (including the one that was just followed) to the new location.

Detecting whether a change to the current focused subterm may invalidate
a bookmark is also easy. A route will only point inside the current subterm if it
has no up components, i.e. it has the shape Route Stop something .

6 Conclusions

6.1 Related Work

There has been a lot of discussion about zipper data structures in the Haskell
community recently. Practical, popular applications [5] and general libraries [4]
are emerging based on the underlying ideas of the original paper [1]. Like our
library, these examples take the general principles of contexts and a focal point,
and tailor them to speci�c domains (managing stacks of windows for a window
manager, or providing a usable interface for editing a large number of related
items, with the option of changing your mind).

One of the fundamental underpinnings of our work (and much of the related
work) is that of a one-holed context. These have been discussed in [10], and
provide an interesting relationship between di�erential mathematics and data
structures. Indeed it is due to this link that we know we can automatically
generate the Contexts for simple data structures using our Template Haskell
scripts.

There are existing reusable, zipper-based libraries in the literature. In [3]
the authors consider a data structure that is parametric over the type being
traversed, and requires much less boilerplate to implement. However their library
does not consider traversals over a heterogeneous data type and there does not
appear to be a succinct extension to the work that would allow such a traversal.

In [2] the author presents an elegant GADT based zipper library that is
able to traverse across heterogeneous data types, and requires no boilerplate to
use. However we believe that it is not a practically useful library without some
additional boilerplate being written; the implementation requires that at all use
sites a lot of type information is available to allow up/left/right movements, and
down movements require the precise type of what is being moved into to be
available. In an application that is interactively allowing a user to update the
cursor's position, it would require a complicated existential context with type
classes or type witnesses being present, to allow these movements to happen.
With our library, we provide both the type speci�c movements, but have also
provided the additional boilerplate needed to recover the generic movements that
can move a cursor without any additional type constraints being present.

An alternate approach to the cursor library was explored in [6]. Here, the zip-
per library is parameterised by a traversal function and uses delimited continua-
tions to move around the tree. The authors also show how to support a statically
known number of sub-cursors, allowing something like our route/bookmark func-
tions. They however, are working in the context of �lesystems and do not need
to consider lexically bound information in the interface they present.

6.2 Further Work

Unsurprisingly, there is always more functionality we could add to our library.
We have also only looked so far at Language instance generation for simple
languages, we have not considered cursors for languages that are themselves
parameterised by types, or languages with GADTs in them, both of these could
present interesting challenges for auto-generating their Language instance.

Furthermore, the zipper data structure was originally designed around the
idea of needing to perform local updates and edits, and not necessarily global
traversals; while we justify this by arguing that in an editor context many local
edits and changes may take place between the global renders; we should perform
some performance and complexity analysis of our global traversals against some
alternative schemes.

There are some other issues; we are using some experimental features of
GHC (e.g. type families), which are not completely implemented yet - when a
complete implementation is released, we will be able to neaten up some of the
automatically generated instances. Also, Template Haskell does not support the
generation of GADTs or type family instances and so our generation scripts
output the source code for compilation to new �les; this is an ugly indirection
step that we would like to avoid in future.

CLASE was borne out of experience of implementing a structured editor.
We now want to retro�t CLASE back into our structured editor, and in doing
so hopefully �nd other useful traversals and features we can generalise out that
may be useful in a more general setting.

6.3 In Conclusion

We have outlined a cursor library based on ideas from Huet's original paper,
but using GADTs to allow navigation around a heterogeneous data type. Using
CLASE makes it straightforward to render a cursor, and encode bookmarks.

The code presented has been split into three parts, that which the user pro-
vides, that which forms a generic library, and that which we automatically gener-
ate using Template Haskell. At no point has the user been required to implement
any boiler-plate code themselves.

7 References

References

1. Huet, G. The zipper. Journal of Functional Programming, 7(5):549-554, 1997
2. Adams, M. Functional Pearl: Scrap Your Zippers. Unpublished, 2007
3. Hinze, R. and Jeuring, J. Functional Pearl: Weaving a Web in J. Functional Pro-
gramming, 11(6):681-689, November 2001.

4. Yorgey, B. zipedit library (Online), 2008, http://byorgey.wordpress.com/2008/06/21/zipedit/
5. Stewart, D. Roll Your Own Window Manager: Tracking Focus with a Zipper (On-
line), 2007, http://cgi.cse.unsw.edu.au/ dons/blog/2007/05/17

6. Kiselyov, O. Tool demonstration: A zipper based �le/operating system. In Haskell
Workshop. ACM Press, September 2005

7. Sulzmann, M. and Chakravarty, M. M. T. and Jones, S. P. and Donnelly, K. System
F with Type Equality Coercions, in The Third ACM SIGPLAN Workshop on Types
in Language Design and Implementation (TLDI'07), January 2007.

8. Allwood, T. Clase library download and screenshots, (Online), 2008,
http://www.zonetora.co.uk/clase/.

9. de Bruijn, N. G. Lambda calculus notation with nameless dummies. a tool for auto-
matic formula manipulation with application to the church-rosser theorem, in Inda-
gationes Mathematicae (34) 381�392, 1972

10. McBride, C. The Derivative of a Regular Type Is Its Type of One-Hole Contexts,
Unpublished, 2001, http://strictlypositive.org/di�.pdf

11. Jones, S. P and Vytiniotis. D and Weirich S, and Washburn G. Simple uni�cation-
based type inference for GADTs, in ICFP, 2006

12. Chakravarty, M. M. T. and Keller, G. and Jones, S. P. and Marlow,
S. Associated types with class, In POPL '05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
http://www.cse.unsw.edu.au/ chak/papers/assoc.ps.gz, 2005

