
T HM D:
A C C H G

Matthew Sackman and Tristan Oliver Richard Allwood
matthew@wellquite.org, tora@zonetora.co.uk

W H?
S guaranteed to work - .

H
• Functional programming language

• Lazy

• Referentially transparent right down to I/O

• Industrial strength optimising super-dooper compiler (GHC)
paid for by Microsoft!

• Robust interface to C libraries and native code

• OpenGL bindings in standard libraries (unlike Java!)

H: S
 H

import Data.Char

data Tree a = Empty | Node (Tree a) a (Tree a)
deriving (Show)

insert :: (Ord a) => a -> Tree a -> Tree a
insert v Empty = Node Empty v Empty
insert v orig@(Node left v’ right)

| v < v’ = Node (insert v left) v’ right
| v > v’ = Node left v’ (insert v right)
| otherwise = orig

H: S
 H

data Tree a = Empty | Node (Tree a) a (Tree a)
deriving (Show)

insert :: (Ord a) => a -> Tree a -> Tree a
...

instance Functor Tree where
fmap _ Empty = Empty
fmap f (Node left v right)

= Node (fmap f left) (f v) (fmap f right)

myTree :: Tree Char
myTree = foldr insert Empty "helloWorld"

intTree :: Tree Int
intTree = fmap ord myTree

H: S
 H

isIn :: (Ord a) => a -> Tree a -> Bool
isIn _ Empty = False
isIn v (Node left v’ right)

| v < v’ = isIn v left
| v > v’ = isIn v right
| otherwise = True

infTree :: Tree Int
infTree = Node (fl (-1)) 0 (fr (1))

where
fl n = Node (fl (pred n)) n Empty
fr n = Node Empty n (fr (succ n))

H: S
 H

main :: IO ()
main = do putStrLn . show $ myTree

putStrLn . show $ intTree
putStrLn . show . fmap (chr . (+1)) $ intTree
putStrLn . show . isIn 101 $ intTree
putStrLn . take 1000 . show $ infTree
putStrLn . show . isIn 1031 $ infTree

*Main> main
Node (Node Empty ’W’ Empty) ’d’ (Node (Node Empty ’e’ (Node Empty ’h’ Empty)) ’l’ (Node (Node Empty ’o’ Empty) ’r’ Empty))
Node (Node Empty 87 Empty) 100 (Node (Node Empty 101 (Node Empty 104 Empty)) 108 (Node (Node Empty 111 Empty) 114 Empty))
Node (Node Empty ’X’ Empty) ’e’ (Node (Node Empty ’f’ (Node Empty ’i’ Empty)) ’m’ (Node (Node Empty ’p’ Empty) ’s’ Empty))
True
Node (Node
True

H ?
S ’ , ?

R H
• Higher-order functions: aids reuse and leads to very concise

code

• Very rich type system: requires much better discipline from the
programmer than with C++/Java

• Laziness creates possibility of optimisations that are difficult to
achieve in non-lazy languages

• No pointer arithmetic, no null pointer exceptions, segfaults etc
etc

• Much easier to reason about and be able to understand the
effect of code at first glance

• Very easy to link and wrap native code

H ?
T , ’ quite . . . !

O
• Optimising Haskell can be done and can result in really fast

code, but sometimes at the cost of readability

• Garbage collection issues, though much less pronounced than
Java

• Profiling and debugging tools are not as mature and featureful
as for other languages

• Learning curve: Type Classes, Monads, GADTs, Functional
Dependencies, Phantom Types etc: a rich academic
playground!

• Tends to distract from doing a PhD. . .

• And now the game!

H ?
T , ’ quite . . . !

O
• Optimising Haskell can be done and can result in really fast

code, but sometimes at the cost of readability

• Garbage collection issues, though much less pronounced than
Java

• Profiling and debugging tools are not as mature and featureful
as for other languages

• Learning curve: Type Classes, Monads, GADTs, Functional
Dependencies, Phantom Types etc: a rich academic
playground!

• Tends to distract from doing a PhD. . .

• And now the game!

	Introduction
	Haskell: Super quick
	Haskell: Super quick
	Haskell: Super quick
	Haskell: Super quick

